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INTRODUCTION
The synergetic association between algae and fungi in which 
algae arrange food via photosynthesis to their companion, 
while fungi offer shelter to its partner, are collectively grouped 
into lichens (Sudarshan et al., 2010). These organisms are 
perpetual, buoyant and are able to live for many years in 
extreme conditions  such as snowy Himalayas to barren 
areas (Maphangwa et al., 2012). India has a rich diverse 
flora of lichens contributing 15% of total global lichen flora  
(Upreti 1998) and is represented by 2714 species  
(Sinha et al., 2018).  

Because of their immense importance in the field of 
medicines and spices, lichens have been used throughout the 
world since prehistoric time and are exported from temperate 
regions of the Himalayas including Himachal Pradesh and 
Uttarakhand, which are the reservoirs for lichen diversity. 
Besides this, lichens have been reported to be used for 
several other purposes, such as, dyes, food, animal feed, 
architect models, wreath and floral decorations, perfumes, 
and as test organisms for atmospheric pollution (Anonymous 
1962; Moxham 1986). It is the presence of approximately 
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1000 secondary metabolites belonging to various classes viz. 
diterpene, triterpene, dibenzofuran, depsides, depsidones, 
anthraquinones, xanthones, usnic acid and pulvinic acid 
derivatives (Dayan et al. 2001) that makes them unique and 
full of immense medicinal and commercial potential. Many 
of these secondary metabolites are normally absent in any 
other group of plants.

Role of lichens in the environment
Lichens have multiple roles to play in the environment. 
Lichens are associated with nutrient (particularly Nitrogen) 
cycling and are also bio-indicators for various pollutants 
present in the environment. Besides, they have the capability 
to accumulate heavy metals and radioactive compounds. 
These various roles of lichens in the environment have been 
described as under.    

Lichens in the cycling of nutrients
Lichens tend to absorb air and rain-borne nutrients from 
environment for their use and thereby contribute in nutrient 
recycling in ecosystem (Knops et al., 1991). Members of 
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cyanolichen species help in nitrogen fixation through their 
symbiotic relationship with cyanobacteria which provide a 
significant amount of nitrogen to forest ecosystem (Godoy et 
al., 2001). In a recent study, Kobylinski et al. (2015) reveal 
that higher cyanolichen abundance elevates foliar Nitrogen 
in host tree and cyanolichens also balance the nitrogen in 
subalpine fir forest and sub-boreal interior hybrid spruce 
(Kobylinski et al., 2015).

Gauslaa et al. (2012) quantified the higher light 
tolerance of cyanolichens and concluded that cyanolichens  
associated with humid climates but more resistant to drying 
light treatment.

Lichens in the colonization of forests after wildfire
Forest wildfire critically affects the biodiversity and species 
composition of a forest. However, it often provides a 
competition free habitat for primary colonizers such as few 
species of lichens, mosses and bryophytes. The availability 
of nutrients and substrates may differ from a natural to post-
fire forest enabling certain lichens to grow more efficiently as 
colonizers (Lohmus et al., 2018). Although the re-succession 
of forest land by lichens is very slow and it takes over decades, 
in some early post-fire succession 2-4 years after forest-
burning, lichens start re-colonization by dispersing from the 
surrounding unburned forest areas (Maikawa et al., 1976; 
Ruokolainen et al., 2006; Motiejunaite et al., 2014). The 
ability of re-colonization varies within different taxonomic 
groups of lichens and depends upon mode of dispersal, growth 
rate and the specificity of substrates for habitat (Longán 
et al., 1999; Johansson et al., 2006). In some cases, when 
sufficient biological nutrients and substrates such as wood 
logs, barks, snags and charred surface are available post-
wildfire, the lichenbiota grows more rapidly (Lindenmayer 
et al., 2008; Schmalholz et al., 2011). Certain microlichens, 
viz., Carbonicola myrmecina and C. anthracophila etc. have 
been documented to have strong priority for burnt substrate 
(Timdal 1984; Bendiksby et al., 2013). Rate of colonization 
of microlichens are much slower than macrolichens 
(Hamalainen et al., 2014). The Microlichens: Trapeliopsis 
flexuosa and Placynthiella icmalea and Macrolichens: 
Vulpicida pinastri, Hypocenomyce scalaris, Hypogymnia 
physodes and Parmeliopsis ambiqua, are among the most 
frequent colonizers of charred surfaces. Additionally, about 
20 species of Cladonia were found to colonize on burned 
forest substrates (Lohmus et al., 2018). This signifies the 
important role of lichens in re-succession in burned forest 
zones. 

Lichens as bio-indicators and bio-monitors of pollution
Pollutants are major public health concern; those may include 
carbon monoxide, sulphur dioxide, nitrogen dioxide, ozone 
and particulate matter. Air pollution is notoriously known 
to cause respiratory and other health issues, which could be 

fatal as well. Lichens are enormously biologically diverse 
(Hawksworth 2001) and functionally important in terrestrial 
ecosystems (Arseneault et al., 1997). For monitoring of 
ecosystem health, a sensitive, relevant and measurable 
indicator is required. Lichens fit for most of these criteria 
because they can persist through the environmental extremes 
related to humidity, temperature, wind and air pollutants.  

Use of living organisms or their remains has been suggested 
as an indicator of environmental health in either quantitative 
(bio-monitoring) or qualitative (bio-indication) terms 
(Markert et al., 2011). Pertaining to their unique biology, 
lichens are important bio-indicators due to their sensitivity 
towards pollutants, especially sulphur dioxide (Saxena et 
al., 2007). They are also bio-monitors for trace elements and 
carry out heavy metal accumulation and deposition in their 
thalli (Garty 2001; Conti et al., 2001). The diversity of lichens 
is affected by pollution mainly by the presence of sulphur 
dioxide because it decreases the pH of medium and inhibits 
the growth. So, lichens can be used as monitors of pollutants 
as well as of air quality (Seaward 1992). Other reports reveal 
that not only SO2, but other pollutants like O3 Sigal et al. 
(1983), NO2 Nash (1976), NH3  Van Dobben et al. (1996), 
fluoride Nash (1971), heavy metals Folkesson et al. (1988) 
or air pollutants in general, do also have role in the decline 
of lichen diversity. Studies show that some lichen species 
are also capable of survival in extreme climatic conditions 
(Hauck et al., 2007). 

Changes in composition of lichen species is a very 
prominent tool for getting clues regarding changes in climate, 
air quality and biological processes. If any change or alteration 
transpires in natural atmosphere there is a change also 
recorded in diversity, abundance, morphology, physiology, 
accumulation of pollutants of lichens. Generally biodiversity 
of lichens is also affected by overexploitation, air pollution, 
climate change which results in habitat degradation or loss and 
fragmentation (Scheidegger et al., 2009). The best example 
of this could be seen in India, where two metropolitan cities 
viz. Bangalore (Nayaka et al. 2003) and Kolkata (Upreti et al. 
2005b) recorded loss of lichen diversity with increasing rate 
of urbanization and atmospheric pollution. 

Heavy metal accumulation by lichens
Pollutants can penetrate and affect the community of lichens. 
Lichens can also be used as bio-monitors of pollutants by 
quantifying the amount of trace element(s) accumulated 
within them over time (Srivastava et al., 2015). Studies from 
various parts of the world revealed that lichens are being used 
to monitor for metal deposition both as active and passive 
monitors (Jeran et al., 2002). Because of the excess use of 
chemical fertilizers and pesticides in the agriculture industry, 
the physical and chemical texture of the soil changes. The 
bioaccumulation of these trace elements by vegetation has 
become a risky affair not only for nature as well as for human 
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health (Kabata et al., 1995). Lichens, which for long have 
been recognized as sensitive indicators of environmental 
conditions are also good accumulators of many of these trace 
elements (Bingol et al. 2009), particularly heavy metals and 
radionuclides (Aslan et al., 2010). 

Numerous lichen species have also been identified to 
accumulate airborne metals like Pb, Ni, Cu, Cd, and Zn in 
their thalli (Bajpai et al., 2012). Lichens accumulate these 
metals either on the outer surface of the walls of their fungal-
hyphae or within the walls (Bajpai et al., 2010a). But some 
of the metals thus absorbed by the lichen thalli gain entry 
into the cells and ultimately take part in the metabolism. 
Finally, they may lead to the death due to accumulated metal 
toxicity (Dzubaj et al., 2008). Certain epiphytic lichens have 
been particularly gained attention for their bioaccumulation 
potential (Jeran et al., 1996); like Hypogymnia physodes for 
bioaccumulation of trace elements Jeran et al. (1996) and 
Pyxine cocoes for bioaccumulation of metals (Bajpai et al., 
2012). Certain Lichens of Garhwal Himalaya are known to 
accumulate polycyclic aromatic hydrocarbons (Shukla et 
al., 2009). Saxena et al. (2007) reported that crustose lichen 
Arthopyrenia nidulans and foliose lichen Phaeophyscia 
orbicularis accumulated heavy metals (Saxena et al., 
2007). The best example of heavy metal accumulation was 
reported in Kodaikanal (India), near a thermometer factory, 
where the lichens were found to accumulate high amount 
of Mercury (Krishna et al., 2003), whereas lichens from 
mining sites are reported to have higher accumulation 
of arsenic (Bajpai et al., 2009a). A study of Bajpai et al. 
(2009b) in Mandav city in central India illustrated that 
although most of the metals were absent, or present in 
insignificant amount in substrates, yet the thallus of lichens 
had significantly higher concentration of metals such as 
Cd, Cr, Ni and Zn. Thus it is apparent that the accumulated 
metals were air borne (Bajpai et al., 2009b). Out of different 
growth forms of lichens, foliose lichens are prior to metal 
accumulation followed by crustose and squamulose lichens. 
Zn, Ni, Cd and Cr were spotted higher in lichens, collected 
from road side while maximum quantity of Fe, Cu and Al 
were reported in lichens collected from central sites of the 
city. The lowest amounts of all the metals were reported 
in sites farther from city. Rani et al. (2011) estimated nine 
heavy metals in lichen samples from 12 different sites of 
Dehradun city by periodic monitoring. An organism that 
responds to certain level of pollution by altering its natural 
behaviour or accumulating the pollutants in its tissues is 
considered a bio-monitor (Blasco et al., 2006). The use 
of pollution bio-monitors enables easier sampling, even 
in remote areas where sampling technology is not readily 
accessible. Furthermore, the sample treatment and analysis 
steps in the laboratory are facilitated, making possible the 
simultaneous determination of several pollutants in the 
same matrix. For air pollution assessment, lichens, mosses, 

and pine needles (Varga 2007) can be considered as the 
most commonly applied organisms. 

All forms of lichens do not show sensitivity towards 
pollutants such as SO2 and NOx gases, for example, 
crustose and foliose lichens are pollution tolerant. Heavy 
metal is acquired in large amount by these pollution 
tolerant lichens (Shukla et al., 2013). In Europe, Lecanora 
conizaeoides Nyl. is recognized as a common pollution 
tolerant species for carrying out air pollution studies, 
however, in tropical Asian countries, Pyxine cocoes (Sw.) 
Nyl. is identified to be an effective pollutant accumulator 
and monitor (Savillo 2010). In India P. cocoes has been 
utilized for the assessment of accumulation of heavy metals 
in commercial, industrial and residential areas of Lucknow 
by using transplant technique (Bajpai et al., 2004). This 
species also exhibited its ability to accumulate arsenic and 
fluoride (Bajpai et al. 2010) and heavy metals like Al, As, 
Cu, Fe and Zn (Karakoti et al., 2014). 

Most of the macro-lichens are known to show high degree 
of sensitivity to metallic pollutants, but some species like 
Dirinaria pappillulifera, Hypogymnia physodes, Parmelia 
sulcata, Pseudevernia furfuracea, and Pyxine subcinerea 
grow luxuriantly in metal rich environment and are known 
to be hyper-accumulator of various metals (Shukla et al., 
2008). Surface complexion, bio-mineralisation and physical 
trapping are some methods by which lichens not only 
accumulate essential but also non-essential elements in the 
intercellular spaces of the medulla (Nash 2008a). In India, 
the bioaccumulation potential of P. hispidula has been well 
explored (Shukla et al., 2009). In several reports lichens 
have been implicated in accumulation and absorption of 
metals from polluted sites (Bajpai et al. 2011), and have 
been used to monitor atmospheric depositions of various 
metals. 

CONCLUSION
Lichens have role in re-colonization of forests post-fire 
and the cycling of certain nutrients in the environment. 
Besides, they are proficient bio-indicators and bio-monitors 
of environmental pollutants. By virtue of bioaccumulation, 
lichens are capable of eradicating xenobiotics from the 
environment. In addition to their diverse roles in the 
environment, viz, bio-indicators, bio-monitors and bio-
accumulators, lichens are sources of diverse and many 
unique secondary metabolites. This has led to identification 
of diverse biological activities in their phytoextracts, such as, 
anti-microbial, anti-pyretic, anti-analgesic, anti-proliferative 
and anti-cancerous activities. Because of their constituents 
including enormous secondary metabolites, lichens are also 
commercially utilized as flavour enhancers, spices, dyes, 
medicines and animal feeds etc. Therefore, we conclude that 
lichens are important for environmental monitoring and for 
good ecosystem health, in general. In addition, their industrial 
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demand is expected to shoot up in future, particularly in 
medicine sector, for the presence of myriad of unique 
metabolites in their thalli.
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